Copied to
clipboard

G = C22⋊C4×C19order 304 = 24·19

Direct product of C19 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C22⋊C4×C19, C22⋊C76, C23.C38, C38.12D4, (C2×C4)⋊1C38, (C2×C38)⋊1C4, (C2×C76)⋊2C2, C2.1(C2×C76), C2.1(D4×C19), C38.10(C2×C4), (C22×C38).1C2, C22.2(C2×C38), (C2×C38).13C22, SmallGroup(304,20)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C19
C1C2C22C2×C38C2×C76 — C22⋊C4×C19
C1C2 — C22⋊C4×C19
C1C2×C38 — C22⋊C4×C19

Generators and relations for C22⋊C4×C19
 G = < a,b,c,d | a19=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

2C2
2C2
2C4
2C22
2C4
2C22
2C38
2C38
2C76
2C76
2C2×C38
2C2×C38

Smallest permutation representation of C22⋊C4×C19
On 152 points
Generators in S152
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 138)(2 139)(3 140)(4 141)(5 142)(6 143)(7 144)(8 145)(9 146)(10 147)(11 148)(12 149)(13 150)(14 151)(15 152)(16 134)(17 135)(18 136)(19 137)(20 126)(21 127)(22 128)(23 129)(24 130)(25 131)(26 132)(27 133)(28 115)(29 116)(30 117)(31 118)(32 119)(33 120)(34 121)(35 122)(36 123)(37 124)(38 125)(39 67)(40 68)(41 69)(42 70)(43 71)(44 72)(45 73)(46 74)(47 75)(48 76)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(77 97)(78 98)(79 99)(80 100)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 96)
(1 109)(2 110)(3 111)(4 112)(5 113)(6 114)(7 96)(8 97)(9 98)(10 99)(11 100)(12 101)(13 102)(14 103)(15 104)(16 105)(17 106)(18 107)(19 108)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 58)(30 59)(31 60)(32 61)(33 62)(34 63)(35 64)(36 65)(37 66)(38 67)(39 125)(40 126)(41 127)(42 128)(43 129)(44 130)(45 131)(46 132)(47 133)(48 115)(49 116)(50 117)(51 118)(52 119)(53 120)(54 121)(55 122)(56 123)(57 124)(77 145)(78 146)(79 147)(80 148)(81 149)(82 150)(83 151)(84 152)(85 134)(86 135)(87 136)(88 137)(89 138)(90 139)(91 140)(92 141)(93 142)(94 143)(95 144)
(1 116 138 58)(2 117 139 59)(3 118 140 60)(4 119 141 61)(5 120 142 62)(6 121 143 63)(7 122 144 64)(8 123 145 65)(9 124 146 66)(10 125 147 67)(11 126 148 68)(12 127 149 69)(13 128 150 70)(14 129 151 71)(15 130 152 72)(16 131 134 73)(17 132 135 74)(18 133 136 75)(19 115 137 76)(20 100 40 80)(21 101 41 81)(22 102 42 82)(23 103 43 83)(24 104 44 84)(25 105 45 85)(26 106 46 86)(27 107 47 87)(28 108 48 88)(29 109 49 89)(30 110 50 90)(31 111 51 91)(32 112 52 92)(33 113 53 93)(34 114 54 94)(35 96 55 95)(36 97 56 77)(37 98 57 78)(38 99 39 79)

G:=sub<Sym(152)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,145)(9,146)(10,147)(11,148)(12,149)(13,150)(14,151)(15,152)(16,134)(17,135)(18,136)(19,137)(20,126)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,67)(40,68)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(77,97)(78,98)(79,99)(80,100)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,96), (1,109)(2,110)(3,111)(4,112)(5,113)(6,114)(7,96)(8,97)(9,98)(10,99)(11,100)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,58)(30,59)(31,60)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,125)(40,126)(41,127)(42,128)(43,129)(44,130)(45,131)(46,132)(47,133)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,121)(55,122)(56,123)(57,124)(77,145)(78,146)(79,147)(80,148)(81,149)(82,150)(83,151)(84,152)(85,134)(86,135)(87,136)(88,137)(89,138)(90,139)(91,140)(92,141)(93,142)(94,143)(95,144), (1,116,138,58)(2,117,139,59)(3,118,140,60)(4,119,141,61)(5,120,142,62)(6,121,143,63)(7,122,144,64)(8,123,145,65)(9,124,146,66)(10,125,147,67)(11,126,148,68)(12,127,149,69)(13,128,150,70)(14,129,151,71)(15,130,152,72)(16,131,134,73)(17,132,135,74)(18,133,136,75)(19,115,137,76)(20,100,40,80)(21,101,41,81)(22,102,42,82)(23,103,43,83)(24,104,44,84)(25,105,45,85)(26,106,46,86)(27,107,47,87)(28,108,48,88)(29,109,49,89)(30,110,50,90)(31,111,51,91)(32,112,52,92)(33,113,53,93)(34,114,54,94)(35,96,55,95)(36,97,56,77)(37,98,57,78)(38,99,39,79)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,145)(9,146)(10,147)(11,148)(12,149)(13,150)(14,151)(15,152)(16,134)(17,135)(18,136)(19,137)(20,126)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,67)(40,68)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(77,97)(78,98)(79,99)(80,100)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,96), (1,109)(2,110)(3,111)(4,112)(5,113)(6,114)(7,96)(8,97)(9,98)(10,99)(11,100)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,58)(30,59)(31,60)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,125)(40,126)(41,127)(42,128)(43,129)(44,130)(45,131)(46,132)(47,133)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,121)(55,122)(56,123)(57,124)(77,145)(78,146)(79,147)(80,148)(81,149)(82,150)(83,151)(84,152)(85,134)(86,135)(87,136)(88,137)(89,138)(90,139)(91,140)(92,141)(93,142)(94,143)(95,144), (1,116,138,58)(2,117,139,59)(3,118,140,60)(4,119,141,61)(5,120,142,62)(6,121,143,63)(7,122,144,64)(8,123,145,65)(9,124,146,66)(10,125,147,67)(11,126,148,68)(12,127,149,69)(13,128,150,70)(14,129,151,71)(15,130,152,72)(16,131,134,73)(17,132,135,74)(18,133,136,75)(19,115,137,76)(20,100,40,80)(21,101,41,81)(22,102,42,82)(23,103,43,83)(24,104,44,84)(25,105,45,85)(26,106,46,86)(27,107,47,87)(28,108,48,88)(29,109,49,89)(30,110,50,90)(31,111,51,91)(32,112,52,92)(33,113,53,93)(34,114,54,94)(35,96,55,95)(36,97,56,77)(37,98,57,78)(38,99,39,79) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,138),(2,139),(3,140),(4,141),(5,142),(6,143),(7,144),(8,145),(9,146),(10,147),(11,148),(12,149),(13,150),(14,151),(15,152),(16,134),(17,135),(18,136),(19,137),(20,126),(21,127),(22,128),(23,129),(24,130),(25,131),(26,132),(27,133),(28,115),(29,116),(30,117),(31,118),(32,119),(33,120),(34,121),(35,122),(36,123),(37,124),(38,125),(39,67),(40,68),(41,69),(42,70),(43,71),(44,72),(45,73),(46,74),(47,75),(48,76),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(77,97),(78,98),(79,99),(80,100),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,96)], [(1,109),(2,110),(3,111),(4,112),(5,113),(6,114),(7,96),(8,97),(9,98),(10,99),(11,100),(12,101),(13,102),(14,103),(15,104),(16,105),(17,106),(18,107),(19,108),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,58),(30,59),(31,60),(32,61),(33,62),(34,63),(35,64),(36,65),(37,66),(38,67),(39,125),(40,126),(41,127),(42,128),(43,129),(44,130),(45,131),(46,132),(47,133),(48,115),(49,116),(50,117),(51,118),(52,119),(53,120),(54,121),(55,122),(56,123),(57,124),(77,145),(78,146),(79,147),(80,148),(81,149),(82,150),(83,151),(84,152),(85,134),(86,135),(87,136),(88,137),(89,138),(90,139),(91,140),(92,141),(93,142),(94,143),(95,144)], [(1,116,138,58),(2,117,139,59),(3,118,140,60),(4,119,141,61),(5,120,142,62),(6,121,143,63),(7,122,144,64),(8,123,145,65),(9,124,146,66),(10,125,147,67),(11,126,148,68),(12,127,149,69),(13,128,150,70),(14,129,151,71),(15,130,152,72),(16,131,134,73),(17,132,135,74),(18,133,136,75),(19,115,137,76),(20,100,40,80),(21,101,41,81),(22,102,42,82),(23,103,43,83),(24,104,44,84),(25,105,45,85),(26,106,46,86),(27,107,47,87),(28,108,48,88),(29,109,49,89),(30,110,50,90),(31,111,51,91),(32,112,52,92),(33,113,53,93),(34,114,54,94),(35,96,55,95),(36,97,56,77),(37,98,57,78),(38,99,39,79)]])

190 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D19A···19R38A···38BB38BC···38CL76A···76BT
order122222444419···1938···3838···3876···76
size11112222221···11···12···22···2

190 irreducible representations

dim1111111122
type++++
imageC1C2C2C4C19C38C38C76D4D4×C19
kernelC22⋊C4×C19C2×C76C22×C38C2×C38C22⋊C4C2×C4C23C22C38C2
# reps121418361872236

Matrix representation of C22⋊C4×C19 in GL3(𝔽229) generated by

100
0430
0043
,
100
02280
01831
,
100
02280
00228
,
10700
046227
028183
G:=sub<GL(3,GF(229))| [1,0,0,0,43,0,0,0,43],[1,0,0,0,228,183,0,0,1],[1,0,0,0,228,0,0,0,228],[107,0,0,0,46,28,0,227,183] >;

C22⋊C4×C19 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_{19}
% in TeX

G:=Group("C2^2:C4xC19");
// GroupNames label

G:=SmallGroup(304,20);
// by ID

G=gap.SmallGroup(304,20);
# by ID

G:=PCGroup([5,-2,-2,-19,-2,-2,760,781]);
// Polycyclic

G:=Group<a,b,c,d|a^19=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C22⋊C4×C19 in TeX

׿
×
𝔽